
DOCUMENT RESUME

ED 111 398 IR 002 454

AUTHOR Sthuyler, James A.
TITLE Hypertext 'Tutor = Hypertutor.
PUB DATE Aug 75
NOTE 17p.; Paper presented at the Association for the

Development of Computer-Based Instructional Systems
Summer- Meeting (Portland, Maine, August 4, 5,
1975)

EDRS PRICE MF-$0.76 HC-$1.58 Plus°Postage
DESCRIPTORS *Computer Assisted Instruction; Computer Programs;

*Cost Effectiveness; *Programing Languages; *Systems
Concepts; *Teaching Methods

IDENTIFIERS Hypertext; HYPERTUTOR; Northwestern University; PLATO
IV; Program Sharing; TUTOR IV

ABSTRACT
The HYPERTUTOR incorporates the ideas of a

"hypertext" and the TUTOR-IV programing language used on the PLATO-IV
system. The HYPERTUTOR is a part of Northwestern University's
MULTI-TUTOR system and runs on a non-PLATO, non-dedicated CDC 6400
computer. It allows the transfer of courseware from PLATO to
non -PLATO systems. It has successfully been transferred to other CDC
6000-series and Cyber-70 computers. This paper outlines the rationale
for the creation of such a system, and gives the backgroUnd of
MULTI-TUTOR, its systems structure, and its compatability problems
with PLATO'S Tutor. Current MULTI-TUTOR sites are listed along with
an outline of the clearinghouses for lessons now being established at
Northwestern. analysis of current cost factors of the MULTI-TUTOR
distem is included. (Author).

Documents acquired by ERIC include many informal unpublished

* materials not available from other sources. ERIC makes every effort *
* to obtain the best copy available. nevertheless, items of marginal *

* reproducibility are often encountered and this affects the quality *

* of the microfiche and hardcopy reproductions ERIC makes available *

* via the ERIC Document Reproduction'eproduction,Sprvice (EDRS). EDRS is not
* responsible for the quality of the ,,original document. Reproductions *
* supplied by EDRS are the best that be made from the original.
*******ic**********11**************icii*T*********************************

U.S. DEPARTMENT OF HEALTH.
EDUCATION &WELFARE
NATIONAL INSTITUTE OF

EDUCATION
THIS DOCUMENT HAS sEEN REPRO
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN,
ATING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE.,
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSiTicN OR POLICY Cy

HYPERTEXT + TUTOR HYPERTUTOR

James A Schuyler; Northwestern University,

Abstract: The'HYPERTUTOR incorporates the ideas of a "Hypertext"
aN (a word coined by Theodor H. 4trelson) and the TUTOR-IV programming
pc\ language used on the PLATO-IV system. The HYPERTUTuR is a part
14-4 of Northwestern University's MULTI-TUTOR system and runs on a
r-1 non-PLATO, non-dedicated CDC 6400 computer. It has successfully

been transferred to other CDC 6000-series and CYBER-70 computers.

CZ) This paper outlines the rationale for creation of such a system,'
gives the background of MULTI-TUTOR, system structure, .compati-
bility problems with Plato's Tutor, lists current MULTI-TUTOR
sites, and outlines the clearinghouse for lessons now being es-

tablished at Northwestern. It concludes with an analysis of
current operating costs on the MULTI-TUTOR system.

tf

8
vo..^.

Background

The MULTI - TUTOR, including the HYPER-TUTOR, really exists for a
single reason -- to make the transfer of Tutor-language courseware*
from Plato to non-Plato systems possible (and vice versa). The

reasons for this desire to transfer courseware, and the many prob-
lems complicating transfer, are the subject of this paper.

There is really a single basic reason for transfer of C.A.I. course-
ware -- it takes so long.to produce C.A.I. instructional units that
the cost must be shared among many institutions and students to
make it worthwhile. The sharing can be done by creating gigantic
C.A.I. systems such as Plato; where 1000 students may be connected
to the computer at once, or it can be done by physically transport-
ing courseware to many different locations to be run (the TICCIT2
approach) .::

The MULTI-TUTOR (previously called HyperTutor) was created in res-
ponse to three specific needs:
a) We needed to share the cost of lesson development, as outlined

above. The potential to transfer our lesSons to Plato systems and
receive royalties, as well as the potential to import Plato lessons
is still the overwhelming faCtor.

b) People who. cannot afford the cost of extra equipment, terminals
and software to run an actual Plato system still would like to use
the Tutor language, so that their programs will bb fairly compatible
with Plato systems in the future. Many installations have hundreds
of CRT terminals, and cannot afford to trade them on the comparatively
costly Plato terminals. as this would reduce the number of terminals
available to students. In addition, even though the cost of the

* The term "courseware" includes computer programs ("software") and

associated documentation for students.

V

Plato terminal is eipected to decrease, it shows no signS of
doing so in the immediate future.:'MULTI=TUTOR provides some-
thing to do while we're waiting.

c) Many. rograMs written in the Tutor language do not require
the full capabilities,of the Plato system or its terminals.

In, the future, as well as the present, these prOgrams should be'

run on inexpensive CRT terminals, rather than utilizing'the

costly Plato terminals.

There are some reasons for caution in discission of the transport

of Tutor programs:
a) Some programs require the communications provided by Plato

in its 1000-terminal environment. Such programs should not be

transported unless the target system can support these communi-

0
cations.*
b) Some programs really make effective use of the plasma -panel

graphics as part of the teaching process (as opposed to the

"bells-and-whistles" use made of graphics in many Plato programs).
These may be run on MULTI-TUTOR, but still require a Plato termi-
nal (which MULTI-TUTOR supports).

c) Some programs require the-instant response Plato can give.
Brackett3'discusses this point, and claims that if a Plato
program does not "feel" the same on another system, it will lose

its educational effectiveness. MULTI-TUTOR can run in this

way, but the operating system must give CAI top priority.

The MULTI- TUTORJHyperTutor approach

MULTI-TUTOR provides most of the commands of the Tutor language,

plus an "editing" and lesson-creation tool railed the HyperTutor,
to users of Control Data 6000 and CyJqer -70 computers, running
under standard Kronos or Scope operating systems.'

Two assembly-language programs serve as the'base of the system:

a) A syntax scanner and translator (READIN) 'which converts
Tutor programs. into Micro-Tutor, which can be interpreted during

interactions with students. (This is roughly the function of

Plato's condensor program.)
,b) An interpreter for the Micro -Tutor.language.

On top of this base stand Tutor lessons written by,courseware

, authors, and a number of "system programs", all 'written in the

TUtor. language: .

a) The Hyper-Editor (Hyper-level),
b) A more conventional text - editor,

* MULTI-TUTOR does, in fact, support many communications tools. But;

in practice, local MULTI-TUTOR users may find that the operating
system or physical facilities may make them difficult to use.

-

14.

0

c) A sign-on program which determines the type of terminal a
student is using and sets operational parameters for MULTI7TUTOR,
d) All communications programs, and
e) An execution-error reporter and processor which gives feed-

back to courseware authors about student problems.

The MULTI-TUTOR was designed to provide a lesson-organizing structure
much like Theodor H. Nelson's proposed Hypertext4. This structure
would'make it possible for students or teachers to browse 'through
existing "public" lessons on each computer system. Because the
Hypertext concept was combined with the Tutor language, the system
was originally called the HyperTutor. It now supports the opera-
tion of Hazeltine, A.D.D.S, Teletype-replacement terminals, Plato
and Tektronix 4023 (CRT) terminals. It does not require dedication'
of any part of the computer, running as a regular time-sharing job.
Lesson materials can be swapped directly from disk or from high-speed
extended core.storage (ECS) as on Plato. Because of the flexibility
of this system, it is now called the MULTI-TUTOR.

The MULTI TUTOR is composed of three operational levels:
//

a) The HyperTutor, an interactive "editor" where the authors of
courseware manipulate paragraphs of text, answers, actions to,be
taken contingent upon students' responses, objectives and flow-charts
for lessons. The terminal used for interaction at this level is
normally'a Plato terminal with touch-panel, because HyperTutor de-
pends heavily on graphics and quick interaction. The HyperTutor
produces Tutor commands to be used at the next"lower level.
b) Tutor, the high-level language, may be used directly by program-

mers, or may simply be used to process code prodpeed at the..Hyper
level. Some authors prefer to create courseware initially in the
HyperTutor, then slip down the ladder to edit that material further
in the Tutor level. Experiments done here at Northwestern have shown
a redudtion in lesson preparation time of approximately 25% when this
approach is used.

c) The Micro - Tutor. Here the actual functions required to service the
student are represented in a Tutor-like (but more detailed) form.
This level of the system is the one we anticipate using to support other
"hard core" C.A.I. languages*in the future. All that is required to
add a new language to the system is the creation of a syntax scanner and
translator. Nobody programs at the micro-level; it is simply the repre-
sentation chosen for the concepts critical to all C.A.I. languages,
and only serves to drive the interpreter.

* "Hard core" is the term used to reference systems in which a
special-purpose language or equi pment are used for C.A.I.

0

History

The design and programming .pf MULTI-TUTOR began in late 1972,

and although the system is perfectly operational, it is constant-
ly updated to provide compatibility with the ever-changing Tutor

language. During 1974, MULTI-TUTOR (under the name HyperTutor)

was transferred to other universities for preliminary tests. By

July, 1975, it had been shipped to seventeen sites, and was
known to be operational at seven of these.

One major pitfall in the growth of C.A.I. systems has been the

distribution of systems without courseware to accompany them.
In September, 1975, when MULTI-TUTOR is officially released, it

will be accompanied by a courseware exchange service. In the

initial exchange will be lessons developed and tested at North-

western, in C.A.I., Pediatrics and Linguistics. From this small

base of about fifpy lessons, the exchange will be expanded to
include lessons created on Plato as well as other MULTI-TUTOR

systems.
t,41

Current MULTI-TUTOR development is concentrated on the develop`

ment of the HyperTutor prograM described in a. 'later section of

this paper.

Compatibility

MULTI-TUTOR is not completely compatible with Tutor in the sense
that it accepts the full Tutor language. There are several levels

of compatibility, which MULTI-TUTOR supports:
a) Any MULTI-TUTOR lesson should dun, unchanged except for char-

- acter set translations and a few simple replacements done by a

Snobol program, on Plato. If it does not, the condition is not

intended.
b) Plato lessons incorporating no line-drawing or author-de-

signed characters, will run on MULTI-TUTOR's character-oriented

CRT terminal's. In addition, mane lessons which use graphics do

not use them in a :substantial, educational, way. These also can

be transferred at this level. These lessons may,also iriclude

common-storage and datasets.
c) Lessons incorporatingtgraphics, including character sets,

can be run on Plato terminals connected to the MULTI-TUTOR,
d) On the Kronos operating system only, single keypresses can

be processed, allowing a much more flvx0le interaction with the
student. The speed of this processinkdepends to a large degree
upon local operating system variables. i

e) MULTI-TUTOR will not support the echoing of special charac-

ter sets to the student typist, and therefore is contraindicated

for language lessons requiring strange character,sets. .Special
local systems with front-end computers may be able to support

such echoing, but Plato is a far better choice.

Courseware transfer, in both directions, depends upon simple
character-set related Conversions. These are now performed by a

Snobol,program at Northwestern.

cN

qr

Potential for Courseware Exchange

MULTI-TUTOR is now operating at` at 'least seven'sites:

Northwestern University, Evanston, IL
The University of Texas, Austin, TX
The University of Colorado, Boulder, CO
Mass. State College Computer Network, Boston, MA
McMaster University, ,Namilton, Ontario, Canada
COW° - University of Amsterdam, Amsterdam, Netherlands
Oregon State University, Corvallis, 'OR

A numbe.6of other institutions with substantial interest in
currently have,MULTI-TUT°R tapes and are in some stage of imple-
mentation. Implementation at the sites known to be running has
taken at,most a few days, with most making successful implemen- .

tations in,less than a day. Several sites other than Northwestern
are know73,tb be developing courseware -- the extent of these com-
mittments is not known. We, therefore, do not expect a great in-

, flux of courseware,,from MULTI -TUTOR sites for another year or two.

We are currently_seeking_courseciare from Plato authors for the
exchange. Implementation of this courseware will procede cautiously
until we can ensure proper compatibility with Plato's Tutor, and
then we will release .the coursewaile for other sites with Plato
terminals.

The-MULTI-TUTOR courseware clearinghouse will perform several
functions, and is patterned after the CONDUITS model:
a) Courseware to be transferred between Plato and MULTI-TUTOR ,

will be unblocked and some character conversions performed so that
it can be easily read on MULTI-TUTOR systems. MULTI-TUTOR course-
ware for Plato use will also be blocked and converted.
b) technical validation will be performed at Northwestern, using

.terminals of a type suitable for the courseware in"guestion. All
programs must run without technical flaws to pass this stage.

c) The clearinghouse will then suggeSt appropriate people or
organizations for review of the content of the lesson. Certifica-
tion in thetCONDUIT organization isan appropriate model -- disci-
pline committees in recognized academic areas review the course-

. # mare's content and strategy.
d) Courseware which has been passed will be catalogued and re-

leased to MULTI-TUTOR users.

Experience has shown that it may take a year or more for courseware
to reach the catalog stage.

Royalties or single-sale payments will be made to the authorsor-.
owners of courseware used on MULTI-TUTOR systems. MULTI-TUTOR
'reports all lesson usage scrupulotisly.

C

c

Documentation
a

C.A.I. courseware includes not only the computer programs, but asso-

ciated documentation aimed at teacher, student or programmer. .Using

the preliminary documentation guidelines prepared by CONDUIT,6and
input from C.A.I. experts partIcipating in a C.A.I. task -force for

CONDUIT, we have prepared preliminary check -lists for C.A.I. docu-

mentation. These are divided into three parts: teacher, student

and programmer (or technical).

Teacher documentation:

This documentation is expected to give the pros active adoptor an
overview of the material, followed by all details necessary to run
(but not necessarily change or fix "bugs" in) it. It is suggested

thaethis documentation include:
Overall information: A statement of the availability of the

materials (time required for shipment, cost, procedures,

location of the source, copyrights or other restrictions,
and limitations for liability of error). A list of other

centers using the material would also be useful, and a

statement of'what local support is included.

An abstract: The abstract includes the descriptive title of °

the package, authors.' names, original source, names and lo--
cations of subsequent.modifiers, a summary of the substantive'

content, statement of educational objectives; specification
of the computer'S unique instructional role, background re-
quirements for instructors. and students, level of student,
references Used in the construction of the program, a
statement of supplementary materials needed (text, film, etc),
instructional strategy and logic (e.g. drill, tutorial, linear,
inquiry, etc.), and citations of published reviews.

Educational documentation: It is desirable to include the theo-
retical foundhtioni, formulae and techniques of a substantive
nature, relation between program and course materials, recom-
mendations and examples for use in a standard curriculum,

descriptions of how computer activities have been integrated
into .40e,classroom using this package/ a statement of,expected
time allocation for students, faculty and computer equipment,
suggested meihods for evaluating student performance, reports
on actual use of the materials in class, and sources of infor-

mation on formal evaluation (e.g. published results).

Student documentation:

Documentation for the student is expected to give an overview of the

material, plus specific instructions on how to use it.

Abstract: It is recommended that the student be provided with the
full abstract as outlined above.' In any event, s/he should be
provided with: Descriptive title, summary of substantive content,
statement of educational objectives, background requirements for
students, a statement of supplementary materials needed (text,
film, etc).

'2

a

9

Educational documentation: It is recommended that the student be
provided with at least the theoretical foundations, formulae-
and techniTies of a substantive nature, and relation between
program and course materials.

Technical documentation: If the student is expected to make any
modifications to the program, s/he should be provided with full
technical` documentation as described bellow for the programmer..
Otherwise, it should include: a rough explanation of the
program's logical organization, desCriptions of sample input
and output (if not adequately explained interactively, or if

- the.student must prepare input before the session), test
data and expected results, a full list of terms and available
options and how to exercise them, and an explanation of any
program-generated messaqes and how to correct associated faults.

'Local documentation: Instructions on how to use the local computer,
examples showing use of the local computer, a setup example of,
how to access the program under consideration, notations on any
significant differences between the local version and the uni-
vercal model of the program, and information on typicaL run
times and costs. It is also recommended that this information
contain names and phone numbers for 1) the teacher, 2) personnel
at the computer site Who are familiar with the program, and
.3) consultants who can help with computer problems.

Programmer documentation:'

V'
The programmer is the person who ilitially gets the package of les-
sons going-on the local computer, nd is responsible for local techni-
cal verification before-the progrars are used by students. Thus, he
full packet of information for teacher, student and programmer should
be avai/ab/4,to him. However, specific technical information is
also needed as follows:

Technical documeniation: An explanation of the program's logical
organization, an explanation of the functions of discrete modules
within the program, a well-commented program listing (usually on
tape), sample input for all options, sample interactions, listings
of output generated by Sample.data, full description of output,
suggested test problems, full list of terms and options, an ex-
planation of program-generated messages and the conditions which
cause them, a glossary of-variable names and their ases, list of
counters and their uses, auxilliary storage areas, supporting
programs, files and common storage areas. If files or datasets
are used, include a description of,file organization, indices,
security procedures and passwords. A good system flowchart
.should always be.included.

0

The programmer will often be the person to write the local documenta-
tion for the students, and for this reason should be familiar with the
bperating systek and potential student problems.

iy
V

A

kr

Cost of MULTI-TUTOR
1

4

We have conducted some sport tests to determine how much it is costing
us to createlessons using the MULTI-TUTOR, and the factors we have

. i

included are\lis4ed below:
component ____

C.R.T. terminal ($2,000)1

lasts 5 years, used 8 hCurs,per
,clay, 5 dayslper week, 5e .weeks

per year. (10,000 hours) .1 $.20 per stud. hr.

R air, bills: per terminal
Est. $300 per year (2,000 hrs/year) $ 415 per'stpd.hr.

1Modems:last 5 years, asifor term'l.
ft

Initial cost $300, t $:b3 .

,

Phone: dial-up local linJ
Est. $15.00 per month $.09

If

.
Cost of C.A.I: operating system

1 .
$1,000 per year to maintain, .

distributed over 10,000 Ltudent- ,
t

contact-hours'at NorthweStern) $.10 II

1

Computer tith2: actual average

at NorthskStern 1 1.75 ft

...---_
Researching, planning, consulting,

@$10 /hourdiscussing with others f$200 per 1-hr lesson 20 hours per
1-hour leSson

;

Coding, editing, entering into the
computer @$5.,00/hour i$159, if 130 hours per

. : . 1-hour lesson
I

Prelithigary testing, reviewSand .

recoding ?$10/hour f$100 ft 110 hours, per
.

l'' 1\ 1-hour lesson
:(Costs of updating the lesson from
1

.

time to, time are not included.) : totals
.

Assuming that anaverage 1-hOur
.;

-

lesson is used by 500 students, 10

over a single yeaf period ' $.90 per stud. hr.

Additional possible costs:
%

Supervision of C.A.I. centers ? .

Connect-charge: varies a lot, is.

11.00 per hour at Northwestern $1200 .

TOTAL COST PER STUDENT HOUR $4.22 60 fours
AgImms

These costs are typical of those encountered at Northwestern with the
MULTI-TUTOR. Certain items will vary widely in the cost equation, primarily
the cost of terminalsi phone, cost of the operating system, number of
student-hours a lesson produces.and the connect charge.

9

6

$

it, Rs-7-

For example, a change in connect-time charges can be directly added to
the cost eqUation. Or a purchase of a Plato terminal rather than the
inexpensive CRT 4e use could be calculated to raise the cost to a total',0
of45.02 per hour.

4 Conclusion
. -

The MULTI-TUTOR provides amoderately-priced system for people
who have some Cyber 70 computer power to spare. It does not require
additional equipment, either computer or termina15. It provides most
of'the facilities of the Tutor language and a gryt degree of compati-
bility with Plato's.Tutor. It should, therefore, allow relatively
easyNtransfei of lessons to and from Plato systems.

.1

Notes

(1) Numerous reports available from Computer-based Education Research
Laboratory, University of IllinoiS, Urbana, ILP61801

Best reference on the Tutor language is:
Sherwood, Bruce Arne; "The Tutor Language", 1974

(2) Bunderson, C. V. "The Ticcit Project: Design.Strategy for Educa-

tional Innovation", Institute for Computer Uses in Education,
Technical Report N 4; Brigham Young University,' Provo, Utah 1974

(3) Bracett,,Jond (Principal. Investigator) "A TUTOR Minicomputer
System", SofTech, 460 Totten Pond Road, Waltham, Mass. 1975

(4) Nelson, Theodor H., "No More Teachers' Dirty Lboks"," in Computer
Decisions, September, 1970 (pp.16=23)

%

(5) See. numerous papers in "Computing and 'the Decision Makers"v'EDUCOM,

Interuniversity Communications Council, Princeton, NJ:1974
(6) 4reliminary Documentation Guidelines", working-paper Used within

CONDUIT (A consdi-tilim of iegional. networks at Oregon State Uni-
versity, North Carolina Educ. Computing Service, Dartmouth'College
and the Univerities of Iowa and Texas (Austin)).

O

-

tw

9

2

J

1

s.

.A HYPER-Level System for the

. Creation of Computer-Aided-Instruction Cburseware
4

Background and Problem Statement:
.°

Plato's Tutor language 1 will belwidely kilogn ifs-slew years, andmuch

courseware will be finished,having gone through debugging, validation

with .1.asses and certification by peer-review boards such as those'

' created by CONDUIT 2 Tutor certainly appears destined to.become the

"fortran"'of Computer -Aided
,%.

:*

Tutor is among those languages for C.A.Z. used an.a system where lessons

(or programs) are actually programmed, as, opposed to systeMs where the

computei generates questionf from a;database, or Ticcit-rike%systems
where authors of courseware enter informatIon on coding forms, or in
,

an interactive fashion different from the.programMing fbrznat.pf Plato.

Though Tutor programmers may write code which allows the student wide

C lattitude in lesson choice, and .nay .even write code which Mimics the

behavior of other systems, it is diffi&ult to do so because of

the necessity of.1earning more and more Tutor commands to do it. Most

. courseware authors take-the straight and narrow path, which may tend

to steer them in th direction of "programMed instruction". The

approach outlined I., this paper would.cut authoring time for complex
strategies by 25 to 50% for both experiences and inexperienced authors.

Authoring time for lessons:

Experiments carried out at Northwestern have shown that lesson-writing for
.inexperienced authors can take fro 30 to 120 hours of authOr time for

each student-hour of material produced as a final product. Average times

for a group of six inexperienced authors are shown below:

Authoring time to produce onestudent hour
hours.percent:

15
.

. .

30%

.

Planning, consulting,
looking at other
lessohs

Coding, typing and

.editing 25

,

50%

Testing, revision
.',

,10
.

20%

50,hrs=100%

Notice that tven though the editing system used is quite sophisticated,
and allows immediate interactive testing of a lesson, the m'ajot amount

Of time isispent just entering code and getting it to work.

1

V

a

a.

p

1

A Hyper-level Language for C.A.I.:

Current C.A.I. agithbrs geneially work with high-level languages, such as
Plato's Tutor. These allow rapid progra-ming of interactive units when
an author is an experienced programier. Tutor also allows inexperienced
authors to program relatively simple interactive strategies, but its
full repertoire of commands is beyond the reach of anyone without, six
months or more of programming experience. Tutor contains over 200
different "commands", but a subset Of.perhais 15 is enough for the
beginner.

O

In the MULTI-TUTOR system, the Hyper-editor (or HyperTutor) is now being
added above the level,of the Tutor (high-level) language:-

,

Hyper-editor ..., The-HyperTutor, or
graphic interaction '

i level

,.High-levei

The actual language
interpreted by
MULTI-TUTOR

4

.TUTOR.

Micro-Tutor .
ip:relement;1 3

. .

At the Ill'pe.rlevel, a courseware author interabts with the computer using
graphics, and text. The Hyper- editor accepts or elicits ob-
jectives and structure,} and creates a map of the lesson to bewritten
during the interaction. Though the Hyper-editor will not be completed
until the end of 1975, we have provided a short scenario describing the
intended interaction. , .

.

A Scenario

The Hyper-editor, using a Plato terminal equipped. with a touch-panel, lets
the courseware author specify a flow-chart for the general flow of the

)

new lesson. . .

ti

This map,.along with the objectives specifieefor each box, is,then
aVailable to the students mho are bkowsing through MdLTI-TUTOR's list of
public lessons,.letting them "flip the pages" of the lesson before de -

ciding'whethAr to explore further.

f

The lesson-creation process then continues with the author proceeding

to 'more and more detail in the flowchart. S/he "enters" g4box on the

flowchart by touching it -- HyperTutor then requests individual frames
("Units" in the terminology, of Tutor) of the lesson.

Au,thor .';touches" a7Z)

to specify .its

The specification of each frame may include a teaching-strategy, as well

as a short description of the content of the frame. It is anticipdted that

a few (perhaps half a dozen) strategies.for individual units would be provided

with the first Hyper - editor, to determine just how much faster courseware,

can be created this way. Incaddition, authors may design their own frames

for use as prototypes.

The Hyper-editor finally takes these specifications and creates actual

code in the Tutor language. There isno barrier' to creating code in other

"hard core" C.A.I. languages as well, if this seems reasonable. The code

thus created can then be impediat0i,gy tested'on the system the author is
using, and, once debugged, can be shipped to other systems for use by

other teachers and students. It is essential that the system used by
author's of cOurseware.contain both the Hyper-editor and the ability to exe-
,cute,code for,students, but it is not necessary that the eventual target

(student) syitem contain the Hyper7editor.

Preliminary tests at Northwestern:

In an actual test case, this strategy for lesson creation has been partially

tested by the author,of this paper. A teaching strategy much like that to be

used on Ticcit 3 was developed, and is described by,ihe diagram at the top

of the next page. The student may progress from one such frame to another

under program control, or the student may pick frame's. (or short sequences of

frames)
a
from an index. The method of connecting 'the frames 1.0 determined by

the courseware author during the interaction with the Hyper-editor. During

the testing of this strategy, the regular system editor was used to copy a
"paradigm" *frame as many times as was necessary to create the finished les-

son. Specific information for each frame was filled in.as each frame was.

completed. The lesson thus created contained 18 sequences of 5 frames each.

1 4

N

Student picks
one or more
levels of
explanation...

explanations

hard

*2

. .
medium .

000

easy

Pressing =:&B `key

takes student to

practice...

"LAB" 1

key

practice questions

4 "BACK"
./key

.

3

D

Pressing BACK key
takes "student to

explanations...

hard 4
medium

easy

The creation of these 90 frames, each with three levels of explanation and

practice questions, took 35 hours when coded completely by hand, but only

15 hours when the editor was used to copy and modify the frames. This was

a reduction of over 50 t in coding and editing time. Testing and debuggin

time was not strictly measured, but in the case of the hand, coded lesson,

there were many programming errors, some not detected until students started

using the lesson during the academic term, and in the case of the Hyper-coded

lesson, the only errors were typing mistakes in the text to be displayed in

each frame... there were no errors in the'logical flow within frames.

There are no estimates currently made on how much time thejetting of ob-

jectives and creation of flow-charts via the hyper-editor would add or sub -

tract from lesson-creation time.

A-Full-scale Test of the yper- ystem:

A Hyper-editor will soon be completed, capable of creating lessons using combi-

nations of a few test strategies. Lessons will be produced in the Tutor

language, and the'Hyper-system will be written entirely in Tutor, so that it

may be run.as a major part of the MULTI-TUTOR-

Lesson-creation time using this experimental Hyper-editor will be measured
by having both a experienced and inexperienced author create lesson utilizing

these strategies. 91 author will create the lesson, twice, once "by hand"

and once by Hyper-editor. For inexperienced authors, the time necessary

to learn how to program and how to operate the Hyper-editor will be measured

separately, followed by repeated trials as the authors gain experience.

Advantages of this scheme:

There are numerous advantages to the creation of courseware using the Hyper-
editor. First, automatic documentation of lessons is achieved as the
Hyper-system records objectives and flow-charts while the courseware is
being. created. Second, the system can suggest high-interaction of proven
strategies to an author, and will in fact keep track of an author's prefer-

, ences. Third, the strategies are,already debugged and the author of the
courseware need only debug the lesson's content and overall strategy. And
finally, data to be used for evaluation will be "automatically" collected by
the code the Hyper-editor creates, and may be used by the author to review or

0

'

\

restructure the lesson at a /Ater date.
i\

Summary:

\\

This three-layered C.A.I. system will be a revolutionary means of helping
authors create quality courseware in the future. The editing and coding
process alone accounts for 50 % of lesson-creakion time in C.A.I., and
preliminary tests have shown at 50% reductionin that time alone using
the methods explained herein. Full implementation of this system will
show us what decrease in lesson-creation time may be expected overall,
and perhaps what type of author (experienced or inexperienced) will see

6
A

the greater improvement.

Notes:IIIMI 4.

(1) Sherwood, Bruce Arne, "The Tutor Language", Computer-based Education
Research Laboratory, University of Illinois, Urbana, IL; 1974

Numerous papers in VOmputing and the Decision' Makers", EDUCOM,
Interuniversity Communications COuncil, Princeton, NJ , 1974

(3) Bunderson, C. V. "The Ticcit Project: Design Strategy for Educational
Innovation", Technical Report # 4, Institute for Computer Uses .

In Education, BrighaTa.Young University, Provo, Utah 2973 ,

4 YA.

4

0

A Micro-Tutor to make C.A.I. Courseware Transfer Feasible

The companion papers to this'pieve describe a three-layered Computer-
Aided Instruction (C.A.I.) system called the MULTI-TUTOR. The "hyper"
level, highest of the three, allows painless Creation of C.A.I. courseware
by inexperienced programmers. Below that level, the.high-level language
of the computer system is used (Tutor is used by MULTI-TUTOR currently).
The hyper-level system interacts with an author, producing printed docu-
mentation and Tutor code as a result. This paper.describes the operation
4f the lower, elemental level of this system, which is charged with the
execution of the various high-level languages which will be acceptable
to the MULTI-TUTOR.

In the best of all possible worlds, a C.A.I. author would wish, to be
able to transfer courseware to any C.A.I. system, regardless of the lan-
guage in which it is coded. This is clearly impossible today, given the
state orthe C.A.I. art -- every new C.A.I. system designer invents,a new
C.A.I. language which is visualized as somehow "better" than all previous
languages. What is really needed is a C.A.I. system which will adapt to
the syntax of many languages, thus giving the ability to run practically
any C.A.I. lesson on a single computer system. The following diagram .

is a complte sketch of the MULTI-TUTOR:

translator

. .

IHyper-level
1

ITUTOR

(high -level

.....
"."4

1 Micro -level

1 .,.."graphic" interaction

..... ."hard core" language

1....-.Elemental level

In the Plato design, the bridge between high-level and what's actually
used when Students are on-line is a'program called the "condensor" --
it takes Tutor code, scans it for syntax errors, creates various tables
which will be needed during'execution and condenses most Tutor commands
into concise, easily interpretable codes. When a lesson is needed for a
student, it is the "condensed" version which is actually processed.

In the MULTI-TUTOR, the bridge between high-level and elemental-level
is another program -- this time a translator which changes Tutor or
another language into an elemental, very basic but totally comprehensive
micro-C.A.I. language, which can then be interpreted in order to service
students. Because tiie translator is driven by the syntax of the high-level ,

language, it will be able to accept ady C.A.I. language for which a
translation table can be developed. (Part of this project will involve
generating the rules'for Tutor, Planit, Coursewriter and other languages
in..which substantial courscuare now exists.)

Some specific points:

It is not.anticipatedthat authors will actually be writing lessons

using the micro-tutor language -- instead, they will continue
to operate in their own favorite high or hyper-level languages, and

the elemental language will make this possible.

Lesson transfer is not conducted in the micro-level language itself,

though one might use it as a descriptive language in which 6ther

C.A.I. programs could be described. The power of the systeM is

that it can accept lessons written in other langUage.

One is tempted to think of using Tutor itself as an elemental .

;language, since it has all of the facilities the other languages
have, but this will probably not be wise, since there are so many

actions Tutor does not explicit (such as repeating the question

when the student gives a wrong answer). However, there is no

barrier to starting with the functions Tutor embodies, since it is
the most sophisticated of the languages which will be translated

by the MULTI-TUTOR.

Properly implemented, the MULTI-TUTOR would even allow authors to
create and write courseware in their own private languages, simply
by providing rules which could be used to translate into the

micro-tutor language.

Some preliminary work has shown that the function's needed at the

micro leyel can be divided into about ten groups:

1) Calculations,
2) Answer-checking,

3) Branching,
4) Special keys and,functions,
5) Datasets,
6) Paging (units, frames)
7) Labelling Of units or commands,

8) Displays,
9) Waiting for input,

10) Processing (manipulating) responses as characters.

These groups of functions will be explored further in a subsequent

publication.

Summary:

"The Micro-Tutor is looked to as a courseware-transfer-facilitator.
It wil.Callow MULTI-TUTOR to accept several "hard core" C.A.Z.
languages at some future time, mapping each of them into an elemental
representation which ispactually interpreted by the MULTI-TUTOR.

In this way, several high-level languages might be used,9n'a single

computer system, or authors might develop their own lalpgu#es for

personal use. Work doneto date has revealed some brold-categories
into which commandsin C.A.I. languages fall, and actual micro-tutor
representations of these will be brought to light in a future publi-

,

cation.

ray
aL

